In this course the basics of atomic physics will be introduced. In particular, the following topics will be covered:  

1. Helium atom (exchange symmetry and Pauli principle, solution of the Schrödinger equation for the He atom)
2. Many-electron atoms (method of Hartree-Fock, shell model, electronic configurations, screening)
3. Angular momentum (spin-orbit interaction, L-S and j-j coupling schemes, atomic levels)
4. Chemical and physical properties of elements
5. Interaction with external magnetic and electric fields (Zeeman effect, Stark effect)

The lecture introduces the field of experimental astrophysics. It will outline several techniques used for characterizing objects and determine the distance towards them. The behavior and temporal evolution of objects  such as stars, planets and galaxies will be studied and related to their specific signature in astronomical measurements. This relationship between object and measurements will be further experimented by performing simple data analysis on real datasets.

1) Magnetism:
Hund's rules, magnetic exchange coupling, spin-orbit-coupling, crystal-field interaction, thermodynamics of free ions, magnetic order, magnons, Pauli-paramagnetism, stoner-model, RKKY-interaction
2) Superconductivity:
Basic phenomena, thermodynamics, BCS-model, London theory, vortex state, Josephson-effect
3) Superfluid Helium:
Basic phenomena, Bose-Einstein condensation, two-fluid model and experiments

Introductory material: Python programming
Ordinary Differential Equations and Molecular dynamics.
The Fast Fourier Transform.
Monte Carlo methods and the Metropolis algorithm.
Intro/complement to numerical linear algebra.
Partial Differential Equations: Finite differences and finite element methods.
 
 
Students will learn, from a light theoretical basis to practical applications, some of the main algorithms employed in Physics simulations. By the end of the course, students should be able to realize how to develop a numerical simulation given a physical problem.
 
Practical examples and programming during exercises sessions will be given in Python. A basic knowledge of Python before starting the course is recommended.
 

Description:

- Brief review of non-relativistic quantum mechanics.
- The Klein-Gordon equation.
- The Dirac equation.
- The Maxwell equations.
- Quantizing the Klein-Gordon field.
- Quantizing the Dirac field: electrons and positrons.
- Quantizing the electromagnetic field.
- Interacting fields: S matrix, Dyson expansion and Feynman diagrams.


Learning Objectives:

On successfull completion of the course, the student will be able to :
• identify everywhere the key formulas of field theory,
• apply field theory to specific physics problems,
• access to more elaborate field theory like QCD.

Einstein’s relativity, special and general, is a cornerstone of modern physics. It embraces topics like time delation, curved spacetime, black holes, gravitational waves, and cosmology. This class uses a “physics first” approach to make this theory accessible with a minimum of tensor calculus.

Bei aktiver Teilnahme an diesem Kurs wird der/die Student(in) die physikalischen Prinzipien verstanden haben, die für das Verständnis des gesunden Körpers notwendigen sind. Er/sie wird die Grundzüge der Mechanik, der Elektrizitätslehre, des Magnetismus und der Eigenschaften von Festkörpern, Flüssigkeiten, Gasen und Lösungen kennengelernt haben und sich in die Anwendung der Mathematik zur Beschreibung physikalischer Prozesse eingearbeitet haben.

I. Mechanik:
· Translation, · Rotation, · Schwingung und Welle

II. Eigenschaften: Festkörper, Flüssigkeiten, Gase, Lösungen
· Mechanik deformierbarer Körper, · Gase und Lösungen, · Thermische Eigenschaften


III. Elektrizität und Magnetismus:
· Elektrizitätslehre, · Magnetismus, · Elektromagnetische Welle