In this course the basics of atomic physics will be introduced. In particular, the following topics will be covered:
1. Helium atom (exchange symmetry and Pauli principle, solution of the Schrödinger equation for the He atom)
2. Many-electron atoms (method of Hartree-Fock, shell model, electronic configurations, screening)
3. Angular momentum (spin-orbit interaction, L-S and j-j coupling schemes, atomic levels)
4. Chemical and physical properties of elements
5. Interaction with external magnetic and electric fields (Zeeman effect, Stark effect)
- Docente: Joanna Hoszowska
- Docente: Juan Felipe Pulgarin Mosquera

The lecture introduces the field of experimental astrophysics. It will outline several techniques used for characterizing objects and determine the distance towards them. The behavior and temporal evolution of objects such as stars, planets and galaxies will be studied and related to their specific signature in astronomical measurements. This relationship between object and measurements will be further experimented by performing simple data analysis on real datasets.
- Docente: Jos Kohn
- Docente: Jean-Luc Robyr
1) Magnetism:
Hund's rules, magnetic exchange coupling, spin-orbit-coupling, crystal-field interaction, thermodynamics of free ions, magnetic order, magnons, Pauli-paramagnetism, stoner-model, RKKY-interaction
2) Superconductivity:
Basic phenomena, thermodynamics, BCS-model, London theory, vortex state, Josephson-effect
3) Superfluid Helium:
Basic phenomena, Bose-Einstein condensation, two-fluid model and experiments
- Docente: Christian Bernhard
- Docente: Subhrangsu Sarkar
- Docente: Luis Salvador Froufe Perez
- Docente: Augustin Muster
- Docente: Luis Salvador Froufe Perez
- Docente: Nathan Fuchs
- Docente: Baptiste Hildebrand
- Docente: Claude Monney
- Docente: Chi Zhang
- Docente non editor: Abraham De Jesus Aguilar Uribe
- Docente non editor: Nicco Corduri
- Docente non editor: Alexander James Ferguson
- Docente non editor: Karol Michal Kolataj
- Docente non editor: Kalpana Manne
- Docente non editor: Matúš Medo
- Docente non editor: Jose Muñeton Diaz
- Docente non editor: Augustin Muster
- Docente non editor: Krzysztof Piech
- Docente non editor: Shanto Vincent

Description:
- Brief review of non-relativistic quantum mechanics.
- The Klein-Gordon equation.
- The Dirac equation.
- The Maxwell equations.
- Quantizing the Klein-Gordon field.
- Quantizing the Dirac field: electrons and positrons.
- Quantizing the electromagnetic field.
- Interacting fields: S matrix, Dyson expansion and Feynman diagrams.
Learning Objectives:
On successfull completion of the course, the student will be able to :
• identify everywhere the key formulas of field theory,
• apply field theory to specific physics problems,
• access to more elaborate field theory like QCD.
- Docente: Christoph Leuenberger
- Docente: Joël Morf

Einstein’s relativity, special and general, is a cornerstone of modern physics. It embraces topics like time delation, curved spacetime, black holes, gravitational waves, and cosmology. This class uses a “physics first” approach to make this theory accessible with a minimum of tensor calculus.
- Docente: Christoph Leuenberger
- Docente: Frédéric Chassot
- Docente: Baptiste Hildebrand
- Docente non editor: Christelle Clément
- Docente non editor: Morgane Myriam Lorétan
- Docente non editor: Ruslan Mushkaev
- Docente non editor: Mattis Reisner
- Docente non editor: Thomas Rey
- Docente non editor: Jessica Ruffiner

Bei aktiver Teilnahme an diesem Kurs wird der/die Student(in) die physikalischen Prinzipien verstanden haben, die für das Verständnis des gesunden Körpers notwendigen sind. Er/sie wird die Grundzüge der Mechanik, der Elektrizitätslehre, des Magnetismus und der Eigenschaften von Festkörpern, Flüssigkeiten, Gasen und Lösungen kennengelernt haben und sich in die Anwendung der Mathematik zur Beschreibung physikalischer Prozesse eingearbeitet haben.
I. Mechanik:
· Translation, · Rotation, · Schwingung und Welle
II. Eigenschaften: Festkörper, Flüssigkeiten, Gase, Lösungen
· Mechanik deformierbarer Körper, · Gase und Lösungen, · Thermische Eigenschaften
III. Elektrizität und Magnetismus:
· Elektrizitätslehre, · Magnetismus, · Elektromagnetische Welle
- Docente: Sofia Magkiriadou
- Docente: Frank Scheffold
- Docente: Véronique Trappe
- Docente: Viola Valentina Vogler-Neuling